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Global kinetic energy conservation with unstructured meshes
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SUMMARY

Conserving kinetic energy is essential in Large Eddy Simulation (LES) in order that subgrid scale model-
ling (SGS) is not hidden by numerical errors. High-order schemes, which are not available for unstruc-
tured grids, are su�cient but not a necessary condition for energy conservation. The problem addressed
here is directly ensuring energy conservation through a careful discretization of the momentum and
mass equations, and it is shown that this can be achieved with a low-order scheme for unstructured
grids. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It can be shown that ‘classical’ collocated arrangements using the traditional convection
schemes do not conserve kinetic energy. The well-known structured discretization ‘fully stag-
gered’ [1] with a proper choice for time advancing scheme conserves the global kinetic energy.
This discretization is only applicable to simple geometries and has been recently extended to
an unstructured formulation by Perot [2].
The present work deals with the discretization of unsteady Navier–Stokes equations for

incompressible �ows. The derivation of the kinetic energy equation is usually not veri�ed in
a discrete sense. Actually, continuous formulas such as div(pV )=p ·div(V ) + V ·grad(p),
where p and V stand, respectively, for the pressure and the velocity �eld are not true in
a discrete sense. Perot [2] recently proposed a discretization using triangular or tetrahedral
elements which conserve global kinetic energy by using the normal components of the velocity
located at the centre of faces and the pressure at the circumcentre. However, applications in
the latter paper were limited to 2D laminar �ows. The present work proposes a somewhat
di�erent discretization with more pressure nodes and using the Cartesian components of the
velocity. The pressure is located at the cell vertex and at the centre of gravity of the elements,
while the velocity is at the centre of the faces, retaining a collocation of all three components
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Figure 1. P1NCP1B discretization.

(see Figure 1). A �nite volume–�nite element method is used, whereby the principle of shape
functions is introduced into the �nite volume method [3].

2. DISCRETIZATION

The equations solved are the Navier–Stokes equations for an incompressible �ow using the
rotational form for the convective term and for the time being setting aside viscous terms:

@V
@t
+ rot(V )∧V + grad

(
V 2

2

)
=−grad(p)

div(V )=0
(1)

The discretization is based on triangular (resp. tetrahedral) in 2D (resp. in 3D). The velocity
is linear over the elements (P1 non-conform). The pressure is P1 over the internal diamond
elements obtained by joining in 2D (resp. in 3D) two nodes (resp. three nodes) and the centre
of gravity (see Figure 1). This is equivalent to adding the bubble min to the classical P1
element in a �nite element approach. The pressure element is then called P1 Bubble. Thus, the
velocity–pressure discretization is called P1-non-conform-P1-Bubble (or P1NC-P1B) using a
�nite element nomenclature. The control volumes of the velocity and the pressure are shown
in Figure 1.

2.1. The momentum equations

By integrating the momentum equations over a velocity control volume �i, one obtains
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Figure 2. Velocity control volume.

∫
�i

@V
@t
d� +

∫
�i
[rot(V )∧V ] d�=−

∫
�i
grad

(
p+

V 2

2

)
d� (2)

where �i is the diamond control volume enclosing the common surface between primary cells
K1 and K2 (see Figure 2).
For simplicity, 12V

2 is introduced in the pressure term.
Using operators formalism, one can write Equation (2) as

@M (V )i
@t

+ R(V )i=−B(p)i (3)

where M stands for the mass operator, R the rotational part of the convection operator and
B the gradient operator estimated through the velocity control volume.†

The mass operator: The velocity �eld is assumed constant over �i. This is equivalent to
a mass lumping:

M (V )i=
∫
�i
V d�≈Vimes(�i) (4)

where mes is the surface of the element in 2D and its volume in 3D.
The rotational operator: V is, respectively, linear over �i ∩K1 and �i ∩K2 (see Figure 2).

Thus, rot(V ) is constant over K1 and K2 separately. The velocity on the R.H.S. of the vector
product is assumed constant over �i

R(V )i=
mes(�i)
d+ 1

[rot(V )K1 + rot(V )K2 ]∧Vi (5)

where d stands for the dimension.
The pressure gradient: The pressure gradient is constant over �i ∩K1 and �i ∩K2. One

obtains

†Although di�usion is not described here, it is noting that the �nite volume formulation using the shape function
interpolation, leads to the same di�usion matrix as the standard �nite element method [3].
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B(p)i=
1
d
(pG2 − pG1)ni −

1
d(d+ 1)

∑
sj∈�i

psjnj (6)

where G1 and G2 are the centres of gravity of K1 and K2, sj are the vertices which belong to
�i and nj the opposite normal vectors of these vertices (see Figure 2).

2.2. The continuity equation

The continuity equation is integrated over the pressure CVs. There are two di�erent control
volumes, those linked to a vertex (�sj) and those linked to a centre of gravity (�Gj).
BT stands for the divergence operator. The following formulas are given in 2D:

BT(V )Gj =
∫
�Gj

div(V ) d�=
∫
@�Gj

V ·n=−1
4

(∑
i∈Kj

Vini

)
(7)

where ni is the external normal of the face i.

BT(V )sj =
∫
�sj

div(V ) d�=
∫
@�sj

V ·n= 1
4
∑
sj∈Kl

(V l1 + V
l
2 )n

l
sj (8)

where V l1 and V
l
2 are the velocities located at the faces which contain the vertex sj and n

l
sj is

the opposite external normal of the node sj in the element Kl. The external normals used in
the equations are not normalized.
The divergence operator written in such a way is not exactly the transpose of the pres-

sure gradient operator. Taking the exact transpose of the pressure gradient for the discrete
divergence operator does not a�ect the divergence constraint on the velocity over the pressure
control volumes. This is done to obtain a symmetric matrix for the projection step (Poisson
equation) and makes it easier to solve with iterative methods like the conjugate gradient.

2.3. The time-advancing scheme

The choice presented here is based on the concept of conserving kinetic energy. We use a
centred scheme (second order) in time by mixing the Crank–Nicolson interpolation and the
Adams–Bashforth extrapolation. t n stands for the discrete time and �t= t n+1− t n for the time
step. One needs to estimate the discrete equation at t n+1=2.
The time derivative:

@M (V )i
@t

n+1=2

≈mes(�i) V
n+1
i − Vni
�t

(9)

The rotational operator:

Rn+1=2(V )i =
mes(�i)
d+ 1

[rotn+1=2(V )K1 + rot
n+1=2(V )K2 ]∧Vn+1=2i (10)

rotn+1=2(V )Ki =
3
2 rot

n(V )Ki − 1
2 rot

n−1(V )Ki (11)
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Vn+1=2i =
Vn+1i + Vni

2
(12)

This choice is unusual. The implicit term in the rotational operator is a part of the trans-
porting velocity whereas usually it is the transported velocity which is implicit (i.e. V∇V is
usually discretised as (Vn∇) ·Vn+1).
The pressure: The pressure is fully implicit. Coupling velocity and pressure is introduced

via a projection method with a �x-point algorithm (inner iterations on the system).

3. CONSERVATION OF KINETIC ENERGY

3.1. Conservation in a continuous sense

The scalar product of the velocity and the momentum equations yields to the kinetic energy
equation of evolution:

@V 2=2
@t

=div
([

−V
2

2
− p

]
V
)

(13)

This is obtained by using formulas such as

div(pV )=p ·div(V ) + V ·grad(p) (14)

If � is the total domain and @� its border, by integrating Equation (13), one obtains

@
@t

∫
�

V 2

2
d�=

∫
@�

−
[
V 2

2
+ p

]
(V ·n) d! (15)

This is the relation we want to obtain in a discrete sense.

3.2. Conservation in a discrete sense

The choices we have made allow us to conserve the kinetic energy and to obtain an equivalent
of Equation (15) in a discrete sense. The kinetic energy is de�ned as Ec =

∑
K

∫
K
1
2 V

2 dK .
As V is linear over the element K and located at the centre of the faces, the kinetic energy

can be approximated by (the formula is exact in 2D):∫
K

1
2
V 2 dK =

mes(K)
2(d+ 1)

∑
i∈K
Vi ·Vi (16)

The scalar product of the velocity with each operator is detailed below:
The mass operator:

Vn+1=2i · @M (V )i
@t

n+1=2

=mes(�i)
(Vn+1i )2 − (Vni )2

2�t
=
∫
�i

@(V 2=2)
@t

d� (17)

The sum over the whole domain gives exactly the time derivative of Ec.
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The rotational operator: The rotational operator is orthogonal to the velocity in a discrete
sense. Thus, the scalar product vanishes.

Vn+1=2i ·R(V )n+1=2i =0 (18)

The pressure gradient: The scalar product of the velocity and the pressure gradient yields
to a discrete formula such as (14).
The sum over the whole domain gives in 2D

∑
i
Vi ·B(p)i = 13

∑
K

∑
l∈K
Vl ·
∫
K∈�l

∇p=∑
Gj

− 2pGj
∫
�Gj

div(V )

− 2
3
∑
sj
psj

∫
�sj

div(V ) + border terms (19)

The border terms are products of p and V . This formula looks like Equation (14). As the
velocity �eld is divergence free, one can write∑

i
Vi ·B(p)i=border terms (20)

An attractive feature of standard �nite volume schemes, is that they conserve momentum
on any grid. The new scheme focuses on energy, and it seems the previous property has
been lost (even on a 2D grid it is di�cult to simplify). But since in the discrete sense
the rotational or convective formulation are equivalent, it is expected that for �ne enough
meshes, momentum will be conserved as in the �nite di�erence limit. More precisely, in
the LES framework, momentum of the large-scale structures should be conserved. While for
smaller scales, standard schemes introduce a systematic energy error (numerical dissipation),
it is possible that in the new scheme, momentum conservation error scale occur randomly and
cancel during the statistical processing.
The scheme proposed in this article will be named either the rotational form—fully implicit

or Conservative Algorithm for Kinetic Energy (CAKE).

4. NUMERICAL TESTS

Two test-cases have been used, a 2D case with the Taylor–Green vortices and a 3D one with
the Homogeneous Isotropic Turbulence (HIT ).

4.1. Taylor–Green vortices

The velocity �eld is initialized by (see Figure 3):

u(t=0; x; y)=− sin(kx) cos(ky)
v(t=0; x; y)= cos(kx) sin(ky)

This �eld should remain unchanged over time in the absence of viscosity. Two di�erent
meshes have been used, one obtained via a structured mesh (squares divided in two triangles)
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Figure 3. Velocity �eld—Taylor–Green.

and a fully unstructured one (Figure 4). Ec is calculated at the end of each time step (several
time steps have been used). The global kinetic energy is exactly conserved (see Figure 5).

4.2. HIT

This test case is based on a realistic spectrum of the kinetic energy. The domain is a cube
(2�)3. The velocity �eld is initialized via FFTs using the spectrum given by

E(k; t=0)=Ak8e−4(k=ki)
2

(21)

where k stands for the wave numbers in the spectral space.
The meshes are obtained by dividing the cube in n3 cubes, each one divided in six tetra-

hedra. We used the meshes obtained with n=16 and 32.
Various values of time steps have been used up to a CFL equal to 3. The �x-point algorithm

converged with less than six iterations for each time step, which is reasonable [4].
It is shown in Figures 6 and 7 that our scheme conserves the global kinetic energy.

The results of CAKE (or fully implicit with the rotational form) are compared with several
numerical schemes. Figure 6 compares CAKE to the numerical schemes which do not conserve
kinetic energy at all such as the centred scheme (using the divergence form for the convective
term) with a second-order Runge–Kutta time advancing scheme, the alternant Mac Cormack
scheme or the rotational form using an Euler explicit scheme. Figure 7 compares CAKE to

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:561–571
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Figure 4. Unstructured mesh—Taylor–Green.

Figure 5. Kinetic energy evolution—Taylor–Green.
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Figure 6. Kinetic energy evolution 1—HIT.
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Figure 7. Kinetic energy evolution 2—HIT.

other schemes that are satisfactory concerning the conservation property such as ‘the fully
staggered with a third-order Runge–Kutta scheme’ and other variants of the discretization
used in this work. These schemes could be interesting if the CPU time is too high in some
other cases. The discretization proposed in the present work is the only one which conserves
exactly the kinetic energy.
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Figure 8. Energy spectrum evolution for CAKE.
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Figure 9. Spectrum behaviour for CAKE.

The time evolution of the spectrum (Figure 8) is shown at di�erent time steps and proves
that the kinetic energy of the large eddies (small wave numbers) is progressively transferred to
small eddies (high wave numbers). The last spectrum is shown in Figure 9. It is proportional to
the square of the wave length, which is a theoretical result, but rarely veri�ed computationally
(equipartion of the spectral density of the kinetic energy).
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5. CONCLUSION

A proper choice of variable arrangements, discrete operators and time-advancing scheme
allowed us to reach the challenging aim of conserving global kinetic energy on unstructured
grids for the non-viscous part of the momentum equations.
Two test-cases have been carried out successfully. The Taylor–Green vortices (2D) and the

HIT (3D). Both of them proved that the scheme developed in this work conserves the global
kinetic energy even with high Courant numbers and the 3D case allowed us to compare this
scheme to other ‘classical’ schemes and to verify a physical result, the �nal stage of the
density spectrum of kinetic energy without any viscosity is proportional to the square of the
wave number.
The di�usion operator has been tested with the Taylor–Green vortices test-case and is of

second order. It will be used to compute real LES with the Smagorinsky subgrid scale model.
The di�usion operator is the only one responsible for the dissipation of kinetic energy. The
analysis of the dissipation due to this operator will be done in future to verify if it leads to
the expected dissipation in the kinetic energy equation.
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